
Document and standardize the code review process.

Code Reviews
Find the detailed version of this checklist
With details on how to implement these

https://roadmap.sh

Visit Roadmaps

Other Best Practices

More Content

Ensure that the purpose of code reviews is clear to everyone.

Define a process for conflict resolution in code reviews.

Have a definitive style guide for style preferences.

Use automation to speed up the code reviews (linting, sni!ng etc)

Set clear expectations for code review turnaround times.

Provide adequate time for code reviews and ensure that it is a priority.

Use code reviews as an opportunity for knowledge sharing and learning.

Constantly monitor and improve code review process.

Recognition and rewards for those with track record of quality feedback.

Encourage team members to participate in code reviews.

Encourage reviewing code in unknown-areas for cross-functional knowledge.

Ensure that “Definition of Done” is documented and clear to everyone

Encourage communication/collaboration; avoid treating code reviews as a one-way process.

Hold regular code review sessions to discuss broader trends or issues that arise during the review process.

Encourage authors to seek feedback during development before submitting a formal code review.

Team Wide Practices

During Development (Author)

Follow the coding standards and any other team guidelines.

Stay consistent with the overall project design and architecture.

Write a failing test if the change is for a bug fix.

Break down complex tasks into smaller easily manageable PRs.

Consider the impact of the change on other parts of the system.

Take notes on any questions or concerns about the change to discuss them during the review.

Write the automated tests.

Write the documentation for the feature or changes if required.

Update any documentation that may have made obsolete through the changes.

After the Development (Author)

Review your code before submitting for review.

Ensure that the changes are complete and ready for review, including all necessary tests and documentation.

Verify that the code change has been properly tested in a development environment.

Double-check that the code adheres to the project's coding standards and best practices. 

Identify any potential performance, security, or scalability concerns and note them for discussion during the review.

Make sure to add proper title, description, any screenshots, relevant links, configuration changes etc in the PR.

Approach the review process with an open mind, and be willing to learn from and collaborate with other team members.

Before Reviewing (Reviewer)

Understand the requirements and the context in which change was made.

Based on the requirements, prepare a list of items that should have been covered in the changes.

Ensure that you understand the codebase and its architecture.

Review any documentation or design specifications related to the change.

Make list of any potential risks or issues that could arise with the change.

Approach the process with an open mind; be willing to provide constructive feedback and collaborate to improve code quality

Consider the overall quality of the code, including readability, maintainability, and scalability.

Determine the appropriate level of review needed based on the scope and impact of the code change.

During Code Review (Reviewer)

Be respectful and professional in your feedback, avoiding personal attacks or derogatory comments.

Be willing to collaborate with the author to resolve any issues or concerns that arise during the review process.

Provide clear and actionable feedback, including specific suggestions for improvement and explanations of any concerns.

Identify any potential performance, security, or scalability concerns, and discuss them with the author.

Prioritize your feedback, focusing on the most important issues first.

Review any tests included with the code change to verify that they adequately cover the functionality and edge cases.

Ensure that the code change adheres to the project's coding standards and best practices.

Ensure that the relevant documentation has been updated.

Team wide styleguide is the absolute authority styling. Verify changes against those instead of personal preferences

Leave comments to suggest improvements, but prefix it with "Nit" if it's not critical to meeting the standards

Seek continuous improvement, not perfection.

Keep the short-term and long-term considerations in mind.

Consider using pair programming as an alternative or supplement to code reviews.

Provide positive feedback in addition to constructive criticism, to reinforce good practices and boost team morale.

After the Code Review (Author)

Address all the feedback received, including any concerns or questions raised.

Implement the suggested changes and provide explanations where needed.

Run the tests and ensure that they all pass after making changes

Update any documentation or code comments a"ected by the changes.

Seek feedback from other team members if you are unsure about the changes.

Submit the updated code for a second review if needed.

After the Code Review (Reviewer)

Resolve conflicting opinions in a timely manner; don't let a PR sit around due to disagreement.

Verify that all the feedback has been addressed by the author.

Review the updated code and ensure that the suggested changes have been implemented as expected.

Run the tests again and ensure that they all pass.

Address any questions or concerns that the author may have.

Be open to feedback from the author and be willing to make adjustments to your feedback if necessary.

After Approval (Author / Reviewer)

Merge the approved code change into the main/feature branch.

Verify that the code change is functioning as expected in the production environment.

Monitor the performance and functionality of the code change and address any issues that arise.

Celebrate the successful completion of the code change!

Keep Shipping

Everyone

Author

Author

Reviewer

Reviewer

Author

Reviewer

Author / Reviewer


	New Wireframe 9 copy 3

