
Use cache aside, write-through, or read-through caching
patterns based on your application requirements.

Backend Performance

Find the detailed version of this checklist
With details on how to implement these

https://roadmap.sh
Backend Roadmap

System Design Roadmap

Related Roadmaps

Caching

Continue Learning with following relevant tracks

System Design RoadmapBackend Roadmap

Use proper cache-invalidation strategies to ensure data
consistency and prevent stale content issues.

Databases

Use connection pooling to reduce connection overhead

Implement e!cient pagination for large datasets

Create e!cient database indexes

Avoid SELECT * queries and fetch only required columns

Security

Keep your dependencies up to date

Implement request throttling and rate limiting

Enforce reasonable payload size limits

Enable compression for responses

Optimize JOIN operations and avoid unnecessary joins

Implement caching at various levels such as database
query results, HTML fragments, or even full-page caching.

Optimize API Response

Implement e!cient pagination for large datasets

Asynchronism

O"load heavy tasks to background jobs or queues

Utilize message brokers for async communication
between services.

Minimise unnecessary processing or expensive
computation on the server.

Load Balancing & Scaling

Use Horizontal or Vertical scaling whatever appropriate

Use load balancing to distribute tra!c across servers

Code Optimization

Profile your code to identify performance bottlenecks

Optimize algorithms and data structures used

Identify and optimize critical paths or frequently
accessed endpoints for overall system health.

Regularly clean up unused data and perform database
maintenance tasks like vacuuming, indexing, and
optimizing queries.

Enable slow-query logging and keep an eye on that.

Network

Minimize network latency by hosting your backend
close to your users.

Use CDNs for static and frequently accessed assets

Regularly audit and update security measures

Implement proper authentication and authorization to
prevent unauthorized access.

Monitoring and Logging

Implement comprehensive monitoring and logging
to track performance metrics and troubleshoot issues

Use tools like Prometheus, Grafana, ELK stack.

Set up database replication for redundancy and
improved read performance.

Use DB sharding for data distribution if required.

Consider using compiled languages like Go or Rust for
performance-critical parts of your backend.

Look into di"erent architectural styles (SOA,
Micro services) and decompose services if required.

Keep an eye on and fine-tune ORM queries.

Utilize features such as lazy loading, eager loading,
and batch processing to optimize data retrieval.

Use profiling tools o"ered by your database.

Set appropriate connection timeouts and implement
e!cient retry mechanism to handle network issues

Batch similar requests together to minimize overhead
and reduce the number of round trips.

Use asynchronous logging mechanisms to minimise
the logging overhead.

Utilize caching mechanisms (HTTP, Server/Client, CDN)

Implement streaming of large requests/responses

Utilize HTTP keep-alive to reduce connection overhead

Fine-tune connection pool settings (e.g. max connections
idle timeout, connection reuse params) to optimize
resource utilization and prevent connection exhaustion.

Consider denormalizing database schema for ready-heavy
workloads and reduce JOIN operations.

Prefetch or preload resources, data, or dependencies
required for subsequent requests to minimise latency

Performance Testing

Conduct regular performance testing and benchmarking
to identify performance regressions, track improvements,
and fine-tune optimization e"orts over time.


	New Wireframe 1 copy

