The Spark Connector is a powerful integration tool that allows you to use MongoDB as a data source for your Spark applications. This connector provides seamless integration of the robustness and scalability of MongoDB with the computational power of the Apache Spark framework, allowing you to process large volumes of data quickly and efficiently.
To start using the Spark Connector for MongoDB, you simply need to add the Maven dependency to your build.sbt
or pom.xml
file:
For SBT:
libraryDependencies += "org.mongodb.spark" %% "mongo-spark-connector" % "3.0.1"
For Maven:
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.12</artifactId>
<version>3.0.1</version>
</dependency>
Here's a basic example of how to work with the MongoDB Spark Connector:
import org.apache.spark.sql.SparkSession
import com.mongodb.spark.MongoSpark
object MongoDBwithSpark {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.master("local")
.appName("MongoDB Integration")
.config("spark.mongodb.input.uri", "mongodb://username:password@host/database.collection")
.config("spark.mongodb.output.uri", "mongodb://username:password@host/database.collection")
.getOrCreate()
// Load data from MongoDB into a DataFrame
val df = MongoSpark.load(spark)
// Perform operations on DataFrame
// ...
// Write the DataFrame back to MongoDB
MongoSpark.save(df.write.mode("overwrite"))
// Stop the Spark session
spark.stop()
}
}
With the MongoDB Spark Connector, you can leverage the power of Apache Spark to analyze and process your data, making it easier to develop analytics solutions and handle complex data processing tasks.
For more details, check the official documentation.