Visit complete MongoDB roadmap

← Back to Topics List


In MongoDB, the Object data type (or BSON data type) is used to represent embedded documents, which are essentially documents inside another document. An object is a key-value pair, where the key is a string and the value can be of any data type supported by MongoDB, including other objects or arrays. This data type is fundamental to MongoDB’s flexibility and the schema-less design of the database.

Object Structure

Objects in MongoDB are represented in BSON (Binary JSON) format, which is a binary-encoded version of JSON. BSON helps speed up data processing and supports the use of additional data types not available in standard JSON. BSON documents are hierarchical and can contain other BSON documents, arrays, and other complex data types.

Here’s an example of an object in MongoDB:

  "_id": ObjectId("507f191e810c19729de860ea"),
  "name": "Alice",
  "age": 28,
  "address": {
    "street": "Main Street",
    "city": "New York",
    "state": "NY"

In this example, the _id field contains an ObjectId data type, the name and age fields contain string and integer data types, respectively, and the address field contains a nested object.

Querying Objects

To query objects in MongoDB, you can use dot notation to access nested fields. For example, to find all documents with an address in New York City, you would use the following query:

  '': 'New York',

Updating Objects

When updating documents with objects, it’s important to use appropriate update operators to ensure the correct update behavior. For example, using $set to modify specific fields of the object:

  { name: 'Alice' },
  { $set: { '': 'Los Angeles' } }

This operation would only update the city field in the address object without affecting other fields within the object.

Aggregation Operations

The MongoDB aggregation framework also supports handling objects for various data manipulations. For instance, you can use $project, $group, or $unwind functions to extract data from objects or manipulate object fields as needed.

Keep in mind that MongoDB encourages denormalized data storage for the sake of query performance, so you should first consider your application requirements and choose a suitable level of normalization or denormalization for your schema design.

To sum up, the object data type is a versatile aspect of MongoDB’s data model, allowing for nesting and structured data storage. Understanding how to work with objects and leverage their functionality is crucial for mastering MongoDB.

Community is the 6th most starred project on GitHub and is visited by hundreds of thousands of developers every month.

Roadmaps Best Practices Guides Videos Store YouTube by Kamran Ahmed

Community created roadmaps, articles, resources and journeys to help you choose your path and grow in your career.

© · FAQs · Terms · Privacy


The leading DevOps resource for Kubernetes, cloud-native computing, and the latest in at-scale development, deployment, and management.